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A general theorem which allows the fast and direct computation of predicted properties in a
full multiple linear leave-many-out procedure is demonstrated by induction. The result allows
the description of a general algorithm which only requires a single multiple linear regression
calculation. From the data generated by this fitting, in a full leave-n-out procedure involving a
set ofm objects, the resolution of

(m
n

)
linear systems of equations of dimensionn× n suffices

to obtain all the sets of cross-validated properties.

KEY WORDS: leave-one-out, leave-many-out, leave-n-out theorem, cross-validation, multi-
ple linear regression

1. Introduction

From early times it was necessary to describe numerical procedures in order to
assess the confidence of prediction results arising from QSAR studies [1–9] or similar
problems in correlation analysis. The most widely used techniques are related to the
cross-validation paradigm. It is assumed by the scientific community that a result ob-
tained by cross-validation possess some intrinsic robustness and even more if a Leave-
Many-Out protocol has been considered [10]. In recent works, there are a wide range of
systematic studies whose results are based on the well-known Leave-One-Out (LOO)
protocol. Usually, the processes are based on Multiple Linear Regressions (MLRs)
[11–19], Partial Least Squares or Principal Components [20–40] (generally coming from
a CoMFA [41] study) and even on non-linear techniques as Artificial Neural Networks
[42–45]. Some studies deal with other methodologies, as for example those based on
taxonomy [46].

When QSAR models are obtained using MLRs, some practical advantages arise.
If m molecules are represented byd descriptors, it is well known that in a linear LOO
procedure it is not necessary to performm fittings of dimension(n − 1) × d [47]. This
confers special features to the linear LOO procedure, but it is also claimed that the
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related parameters overestimate the predictive model capabilities [48,49]. Leave-Many-
Out protocols will be more adequate in order to obtain significant and optimal results. In
fact, the formulation attached to a full linear LOO procedure can be generalized in order
to obtain explicit expressions for the cross-validated properties which will be obtained
when n molecules are being separated form the original group ofm. That is, there
is a generalmultiple linear Leave-n-Out (LnO) procedure formulation. This paper is
restricted to the statement and demonstration of the related theorem.

2. The leave-n-out theorem (LnOT)

Consider a set ofmmolecules which are described by a set ofd < m− n indepen-
dent descriptors(0 < n < m) collected in a rectangular matrixX of dimensionm × d.
It is assumed that this matrix contains a constant column in order to allow the presence
of a constant term in the linear model which will be constructed. Also, it is supposed
that the molecular family has an attached vector of properties or dependent parameters,
y = (y1, y2, . . . , ym)

T. If a MLR fit is performed to the full data, some well-known
algebraic parameters are obtained: them × m predictions matrix (the so-called “hat”
matrix),

H = {hij } = X
[
XTX

]−1
XT, (1)

the vector of linear coefficients,

c = [XTX
]−1
XTy, (2)

and the dependent values fitted by the linear model,

y ′ = (y′1, y′2, . . . , y′m)T = Xc = Hy. (3)

The predictions matrix is symmetric and the corresponding elements can be computed
as

hij = hji = xT
i

[
XTX

]−1
xj , ∀i, j = 1,2, . . . , m, (4)

where the termsxi are column vectors,xi = (xi1, xi2, . . . , xid)T, collecting the original
independent descriptors attached to theith molecule coming from the related row in
matrixX. Hence, form the geometrical point of view, the predictions matrix constitutes
the Gram matrix of the set of vectors{xi} in the space of metricS = [XTX

]−1
.

Suppose thatn distinct molecules are selected from the original data in order to
build the cross-validated setM(n) = {m1,m2, . . . , mn}. Consider the following system
of linear equations:





hm1m1 hm1m2 . . . hm1mn

hm2m1 hm2m2 . . . hm2mn

...
...

. . .
...

hmnm1 hmnm2 . . . hmnmn


− I n






ŷ (n)m1

ŷ (n)m2

...

ŷ (n)mn


 =



t (n)m1

t (n)m2

...

t (n)mn


 , (5)
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or (
H (n) − I n

)
ŷ
(n) = t (n), (6)

whereIn stands for then × n unit matrix and the other definitions are obvious when
comparing equations (5) and (6). Thet (n)mi terms are defined by

t (n)mi = −
∑
j /∈M(n)

hmijyj =
∑
j∈M(n)

hmimj ymj − y′mi , ∀mi ∈ M(n). (7)

They correspond to the fitted value (3) attached to the moleculemi and where the in-
formation relative to all the selected molecules in the setM(n) has been removed. The
superscript used in (5)–(7) is used to explicitly show that the elements are related to a
selected LnO procedure. Such a notation will be extensively used from now on.

The LnOT states that the solution vector of (5) gives the correspondingn property
values which would be predicted if the set ofnmolecules had not been taken into account
from the beginning and consequently did not enter into the MLR model construction. In
other words, the solution vector̂y (n) contains the correspondingcross-validatedprop-
erty values.

A full L nO procedure will be performed whenever equation (5) is solved for all
the

(
m

n

)
distinct choices of the cross-validation setM(n). The main idea underneath the

LnOT allows to express it in another way:

Leave-n-Out theorem. A full linear LnO procedure involving a set ofm objects repre-
sented byd independent descriptors can be performed by solving auniquem× d MLR
and a set of

(
m

n

)
linear systems of dimensionn× n.

The theorem states that in a full linear LnO procedure it is not necessary to perform(
m

n

)
MLRs of order(m− n)× d. This result is specially useful in QSAR studies due to

the fact thatn is usually small compared tom.

3. Proof of the LnOT

The LnOT can be proved by induction. The main leading ideas will be given in
this section and partial proofs and relevant details are described in the appendices below.
This presentation structure has been chosen in order to achieve a clearer exposition. The
two steps of an inductive proof follow.

3.1. TheLnOT applies forn = 1.

Whenn = 1, the cross-validated set reduces toM(1) = {m1} and system (5) returns
a simple formula:

ŷ (1)m1
= t (1)m1

hm1m1 − 1
. (8)
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As it is demonstrated in appendix A, this corresponds to the LOO expression for a single
molecule, the one labeled asm1.

3.2. Assuming that theLnOT applies for a problem of dimensionn it also applies for a
problem of dimensionn+ 1.

The explicit formulas for the LnOT are symmetric and homogeneous with respect
to any molecule of the cross-validation setM(n). Then, the theorem can be proved with-
out loss of generality for a particular molecule, the one labeledm1, say. In other words,
we will study how to obtain the cross-validated property value for an arbitrary molecule
m1 when the cross-validation set involvesn andn+ 1 molecules. From equation (5), its
cross-validated value arises from Cramer’s rule:

ŷ (n)m1
= T (n)n

�
(n)
n

, (9)

where

�(n)
n =

∣∣∣∣∣∣∣∣∣

hm1m1 − 1 hm1m2 . . . hm1mn

hm2m1 hm2m2 − 1 . . . hm2mn
...

...
. . .

...

hmnm1 hmnm2 . . . hmnmn − 1

∣∣∣∣∣∣∣∣∣
(10)

and

T (n)n =

∣∣∣∣∣∣∣∣∣∣

t (n)m1
hm1m2 . . . hm1mn

t(n)m2
hm2m2 − 1 . . . hm2mn

...
...

. . .
...

t (n)mn hmnm2 . . . hmnmn − 1

∣∣∣∣∣∣∣∣∣∣
. (11)

Expression (9) also applies when the setM(n) is expanded to containn+1 distinctmole-
cules and thus becomesM(n+1) = M(n)∪{mn+1}. The cross-validated property value for
the moleculem1 belonging to the setM(n+1) corresponds to a result of the leave-(n+1)-
out procedure. This value can be computed using the expression (9) relative to a LnO
test, buthiding the data of molecule numbern + 1. The process of data hiding consists
into virtually set to zero the property valueymn+1 and the corresponding row in matrix
X, that is, to setxmn+1 = (xmn+11, xmn+12, . . . , xmn+1d)

T = 0. In fact, this corresponds to
the design of a LnO calculation but using anull or phantommolecule entering into the
linear model construction. Once the MLR coefficients are obtained and the linear model
is applied over the cross-validated molecular setM(n+1), the predicted values exactly
coincide with the ones coming from a leave-(n+ 1)-out test. As a consequence of these
considerations expression (9) can be written as:

ŷ (n+1)
m1

= T (n+1)
n

�
(n+1)
n

(12)
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in order to stress that the equation system is of ordern× n but the result is equivalent to
the one obtained in a leave-(n + 1)-out procedure.

The kind of data manipulation described above produces the following changes
over the numerical data employed [47]:

XTX→ XTX − xmn+1x
T
mn+1

and it is straightforward to check that the following relationship holds [47]:

[
XTX − xmn+1x

T
mn+1

]−1 = [XTX
]−1+ [XTX

]−1 xmn+1x
T
mn+1

1− hmn+1mn+1

[
XTX

]−1
. (13)

Then, according to equation (4), this result can be used in a subsequent transformation
of the predictive matrix elements:

hij→ xT
i

[
XTX − xmn+1x

T
mn+1

]−1
xj

= xT
i

{[
XTX

]−1+ [XTX
]−1 xmn+1x

T
mn+1

1− hmn+1mn+1

[
XTX

]−1
}
xj

= xT
i

[
XTX

]−1
xj + xT

i

[
XTX

]−1 xmn+1x
T
mn+1

1− hmn+1mn+1

[
XTX

]−1
xj (14)

and, using equation (4) again, the transformation in equation (14) can be written in a
better way as

hij → hij + hmn+1j

1− hmn+1mn+1

hi mn+1, ∀i, j = 1,2, . . . , m. (15)

Such a transformation conserves the symmetry of the new predictions matrix which has
been generated by this procedure.

Simultaneously, the terms defined in equation (7) transform into

t (n)mi →−
∑
j /∈M(n)

(
hmij +

hmimn+1hmn+1j

1− hmn+1mn+1

)
yj

=−
∑
j /∈M(n)

hmijyj −
hmimn+1

1− hmn+1mn+1

∑
j /∈M(n)

hmn+1jyj . (16)

But, as now the valueymn+1 = 0 holds, it can be written

t (n)mi →−
∑

j /∈M(n+1)

hmijyj −
hmimn+1

1− hmn+1mn+1

∑
j /∈ M(n+1)

hmn+1jyj , (17)

and the transformation (16) is finally expressed as

t (n)mi → t (n+1)
mi
+ t (n+1)

mn+1

1− hmn+1mn+1

hmimn+1, ∀mi ∈ M(n). (18)
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According to the transformations (15) and (18), the determinants appearing in equa-
tion (12) bear the following structures:

�(n+1)
n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

hm1m1 − 1+ hmn+1m1
1−hmn+1mn+1

hm1mn+1 hm1m2 + hmn+1m2
1−hmn+1mn+1

hm1mn+1 . . .

hm2m1 + hmn+1m1
1−hmn+1mn+1

hm2mn+1 hm2m2 − 1+ hmn+1m2
1−hmn+1mn+1

hm2mn+1 . . .

...
...

. . .

hmnm1 + hmn+1m1
1−hmn+1mn+1

hmnmn+1 hmnm2 + hmn+1m2
1−hmn+1mn+1

hmnmn+1 . . .

hm1mn + hmn+1mn

1−hmn+1mn+1
hm1mn+1

hm2mn + hmn+1mn

1−hmn+1mn+1
hm2mn+1

...

hmnmn − 1+ hmn+1mn

1−hmn+1mn+1
hmnmn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(19)

and

T (n+1)
n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t (n+1)
m1
+ t

(n+1)
mn+1

1−hmn+1mn+1
hm1mn+1 hm1m2 + hmn+1m2

1−hmn+1mn+1
hm1mn+1 . . .

t (n+1)
m2
+ t

(n+1)
mn+1

1−hmn+1mn+1
hm2mn+1 hm2m2 − 1+ hmn+1m2

1−hmn+1mn+1
hm2mn+1 . . .

...
...

. . .

t (n+1)
mn
+ t

(n+1)
mn+1

1−hmn+1mn+1
hmnmn+1 hmnm2 + hmn+1m2

1−hmn+1mn+1
hmnmn+1 . . .

hm1mn + hmn+1mn

1−hmn+1mn+1
hm1mn+1

hm2mn + hmn+1mn

1−hmn+1mn+1
hm2mn+1

...

hmnmn − 1+ hmn+1mn

1−hmn+1mn+1
hmnmn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (20)

In appendix B it is shown that

(hmn+1mn+1 − 1)�(n+1)
n = �(n+1)

n+1 (21)

and, similarly, in appendix C it is also shown that a similar relationship holds forT (n+1)
n :

(hmn+1mn+1 − 1)T (n+1)
n = T (n+1)

n+1 . (22)
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In other words, then × n determinants (19) and (20), properly multiplied by the same
term, originate the ones which are homologous to (10) and (11) but extended to dimen-
sion(n+ 1)× (n+ 1). In this way, expression (9) is obtained again but expanded to the
next dimension:

ŷ (n+1)
m1

= T
(n+1)
n+1

�
(n+1)
n+1

. (23)

Similar expressions as (23) hold forany cross-validated moleculebelonging to the set
M(n). The predicted value for the hidden moleculemn+1 ∈ M(n+1) can be also obtained
in the same manner because the attached data has no effect into the linear model con-
struction. Thus, the relationship (5) also applies whenn is replaced byn + 1 and the
LnOT is demonstrated.

Of course, the recursive substitution we are dealing with must be stopped: the
expression (5) is valid for all the values ofn ranging from 1 up tom − d. In a QSAR
study, only those values ofn which are small compared tom will generate useful data.
Moreover, it would be only possible to obtain reliable results when all the descriptors are
linearly independent, even in the MLR fitting procedure and when the cross-validation
sets are being generated and system (5) is solved.

4. General algorithm and explicit expressions for particular cases

From the previous results, a practical and fast way to obtain predictions coming
from a full linear LnO procedure is envisaged. The general algorithm to be followed is
systematic and very simple:

1. Given the matrixX, compute the predictions matrixH in equation (1).

2. Given the vectory, compute the coefficient vectorc in equation (2).

3. Obtain the vector of fitted datay ′ using equation (3).

4. Fix n, the number of leaving molecules.

5. Loop over all the molecular subsetsM(n). For every subset:

5.1. Solve the linear system (5).

5.2. Keep the predicted values.

In order to optimize the algorithm presented above, the system of equations (5)
can be explicitly solved for a particular value ofn and then apply the specific obtained
equations in the algorithm step number 5.1. The explicit formulas forn = 1,2 and 3 are
given next.
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(n = 1) In a LOO, equation (8) applies.

(n = 2) In a leave-two-out, for a pair of moleculesM(2) = {m1,m2}, the mathe-
matical formulas reduce to the two following practical terms:

ŷ (2)m1
= 1

�
(2)
2

[
t (2)m1

(
hm2m2 − 1

)− t (2)m2
hm1m2

]
,

ŷ (2)m2
= 1

�
(2)
2

[
t (2)m2

(
hm1m1 − 1

)− t (2)m1
hm1m2

]
,

where

�
(2)
2 = (hm1m1 − 1)(hm2m2 − 1)− h2

m1m2
.

(n = 3) In a leave-three-out procedure, ifM(3) = {m1,m2,m3}, the relevant math-
ematical formulas are

�
(3)
3 = (hm1m1 − 1)(hm2m2 − 1)(hm3m3 − 1)− h2

m2m3
(hm1m1 − 1)

−h2
m1m3

(hm2m2 − 1)− h2
m1m2

(hm3m3 − 1)+ 2hm1m2hm1m3hm2m3

and

ŷ (3)m1
= 1

�
(3)
3

{
t (3)m1

[
(hm2m2 − 1)(hm3m3 − 1)− h2

m2m3

]
+ t (3)m2

[
hm1m3hm2m3 − hm1m2(hm3m3 − 1)

]
+ t (3)m3

[
hm1m2hm2m3 − hm1m3(hm2m2 − 1)

]}
.

This last equation must be repeated performing two cyclic substitutions:
{m1 → m2,m2 → m3,m3 → m1} and {m1 → m3,m2 → m1,

m3→ m2}.
Other sets of solutions attached to higher values ofn can be obtained from symbolic
mathematical programs, such as Mathematica [50].

At the end of the algorithm, every molecule has an attached pool of
(
m−1
n−1

)
pre-

dicted (cross-validated) values. It is recommendable then to perform a statistical study
of the generated LnO data. A possible option consists into fitting every data subset to
a Gaussian distribution. If the fitting is acceptable, the expected value of the Gaussian
distribution (which will almost coincide with the mean of the data subset) can be taken
as the representative for the cross-validated value of the respective molecule.

The correlation coefficient found between cross-validated representatives and the
experimental property values gives thercv statistic. From the same data it can be also
computed theq(2) term [51–55], nevertheless it seems preferable to use ther2

cv statistic
[56]. Also, apart of the standard statistical tests [57], it is also recommended to con-
sider alternative methods for the evaluation of the statistical significance of the obtained
correlation [8].
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5. Application to the search of an optimal set of descriptors

In QSAR studies it is very common to search for an optimal set of representative
descriptors. The algorithm described in previous section can be conceived as to be a tool
which gives a statistic,rcv, attached to a set of them, those defining the matrixX. It is
obvious that the algorithm can be repeated as many times as sets of descriptors are tested
in a QSAR project. Hence, the whole procedure furnishes a new method for selecting
the best set of descriptors according to the criteria of maximization of the valuercv. This
will be presumably the most immediate utility of the LnOT. In this case, in order to
speed up the process, it is not only recommended to implement the practical expressions
outlined in previous section but also not to perform the gaussian fitting described above.
It is faster to obtain the correlation coefficients directly from the set of arithmetic mean
values attached to every series of molecular cross-validated values.

6. Conclusions

The leave-n-out theorem has been demonstrated. As a consequence, general and
explicit expressions attached to full linear leave-many-out cross-validation processes
have been given. The formulation will allow to easily construct computer codes ori-
ented to be applied to QSAR problems and other fields.
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Appendix A. Demonstration of the LOO expression

The present demonstration constitutes a variant of the one which can be found
in reference [47] related to theq(2) statistic calculation. Consider that the parameters
of equations (1)–(3) are known for the full molecular data set. In order to obtain the
cross-validated value for an arbitrary molecule,m1, it is necessary to hide in equations
(1) and (2) the related information as it is explained in the main body of this paper. In
order to virtually set to zero the data of moleculem1, two transformations have to be
considered:

XTX→ XTX − xm1x
T
m1

(A.1)

and

XTy → XTy − xm1y1. (A.2)
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Then, following a similar notation as employed in equation (2), the coefficients of the
linear model become

c→ c(1)m1
= [XTX − xm1x

T
m1

]−1(
XTy − xm1y1

)
. (A.3)

By a simple application of the model to the data, the vector derived in equation (A.3)
allows the computation of the LOO cross-validated property value for the molecule num-
berm1:

ŷ (1)m1
= xT

m1
c(1)m1
. (A.4)

Equation (13) can be rewritten now as

[
XTX − xm1x

T
m1

]−1 = [XTX
]−1 + [XTX

]−1 xm1x
T
m1

1− hm1m1

[
XTX

]−1
. (A.5)

From equations (26)–(28) and definition (4), it is straightforward to obtain

ŷ (1)m1
= hm1m1ym1 − xT

m1
c

hm1m1 − 1
. (A.6)

In this expression, the numerator corresponds to the termt (1)m1
defined in equation (7) and

the whole quotient can be identified as expression (8).

Appendix B. Demonstration of equation (21)

The determinant (19) can be interpreted as to be the one appearing in equation
(10) but with a termhmn+1mj hmimn+1/(1− hmn+1mn+1) (i, j = 1,2, . . . , n) added to every
element. In this way, every column is split into two terms. Using the property of the
determinants consisting into that the linear combinations among the columns expand the
corresponding linear combinations among the determinants, the term (19) originates the
sum of 2n determinants. These 2n terms can be classified into three kinds:

• First, there is only one determinant collecting all the original columns appearing
in expression (10).

• On the other hand, there are exactlyn determinants bearingn−1 of the original
columns and a different one, the column numberj (j = 1,2, . . . , n), having the
structure of the following vector:

hmn+1mj

1− hmn+1mn+1

hmn+1, (B.1)

where

hmn+1 = (hm1mn+1, hm2mn+1, . . . , hmnmn+1)
T. (B.2)

• Finally, in all the remaining 2n − (n + 1) determinants, at least two different
columns have the structure of expression (B.1). But once common factors are
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extracted, both columns became equal to expression (B.2). Hence, the whole set
of 2n − (n+ 1) determinants vanish.

In this way, determinant (19) expands only a sum ofn + 1 selected determinants. One
can symbolize this sum as follows:

�(n+1)
n = ∣∣1̄,2,3, . . . , n∣∣+ ∣∣1, 2̄,3, . . . , n∣∣+ · · · + ∣∣1,2,3, . . . , n̄∣∣+ |1,2,3, . . . , n|,

(B.3)
where the numbers specify columns and the bar used in the firstn terms indicates that
the selected column bears the same structure as expression (B.1). Then, in each of the
first n determinants a common scalar,hmn+1mj (j = 1,2, . . . , n) is found. Multiplying
the whole expression (B.3) by the termhmn+1mn+1 − 1 then

(hmn+1mn+1 − 1)�(n+1)
n =−hmn+1m1|hmn+1,2,3, . . . , n| − hmn+1m2

∣∣1,hmn+1,3, . . . , n
∣∣

− · · · − hmn+1mn |1,2,3, . . . , n− 1,hmn+1|
+ (hmn+1mn+1 − 1)|1,2,3, . . . , n|. (B.4)

In all then×n determinants appearing in (B.4), the column ordering almost corresponds
to the one appearing in the following(n+ 1)× (n+ 1) determinant:

�
(n+1)
n+1 =

∣∣∣∣∣∣∣∣∣

hm1m1 − 1 hm1m2 . . . hm1mn+1

hm2m1 hm2m2 − 1 . . . hm2mn+1
...

...
. . .

...

hmn+1m1 hmn+1m2 . . . hmn+1mn+1 − 1

∣∣∣∣∣∣∣∣∣
. (B.5)

The exception is found only in one column placed on every one of the firstn determi-
nants. This selected column corresponds to equation (B.2) and, according to the structure
in the determinant (B.5), it must be moved to the rightmost position. In each case, this
column translation requiresn− j swaps. Once these permutations are performed, an ad-
ditional sign equal to(−1)n−j shall be attached to every term. Consequently, expression
(B.4) can be conveniently written now as

(hmn+1mn+1 − 1)�(n+1)
n = (−1)n

{
(−1)0hmn+11|2,3 . . . , n,hmn+1|
+ (−1)1hmn+12|1,3, . . . , n,hmn+1|
+ · · · + (−1)n−1hmn+1mn |1,2,3, . . . , n− 1,hmn+1|
+ (−1)n(hmn+1mn+1 − 1)|1,2,3, . . . , n|}. (B.6)

Such expression coincides with the Laplace development [58] of the determinant (B.5)
by its last row. The terms{hmn+1mj } (j = 1,2, . . . , n) andhmn+1mn+1−1 can be identified
as the 1× 1 minors. In this way, equation (21) is demonstrated.

Appendix C. Demonstration of equation (22)

As the demonstration for a particular molecule is performed here, in the first
column of equation (20) appears the transformed term according to equation (18). If
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the demonstration is carried out for another moleculemi ∈ M(n), this column structure
would be reproduced in the corresponding place.

As transformations (15) and (18) bear the same structure, also the columns of de-
terminants (20) and (19) do. When considering the first column, the termshmn+1m1 must
be replaced here by the constant factort (n+1)

mn+1
. For this column, and only for this column,

this implies a particular redefinition of equation (B.1). Apart from this characteristic,
equation (22) demonstration is analogous to the previous one as outlined in appendix B.
From the expansion of determinant (20) among the linear combinations of the columns,
a sum of 2n determinants arises. For the same reason as in the previous case of appen-
dix B, only n + 1 are, in general, different from zero. This sum, once multiplied by the
termhmn+1mn+1 − 1, corresponds to the Laplace expansion of the determinant

T
(n+1)
n+1 =

∣∣∣∣∣∣∣∣∣∣∣

t (n+1)
m1

hm1m2 . . . hm1mn+1

t (n+1)
m2

hm2m2 − 1 . . . hm2mn+1

...
...

. . .
...

t (n+1)
mn+1

hmn+1m2 . . . hmn+1mn+1 − 1

∣∣∣∣∣∣∣∣∣∣∣
(C.1)

by its last row.
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